Show simple item record

dc.contributor.advisorDaniela Rus.en_US
dc.contributor.authorSung, Cynthia Rueyien_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-02-16T19:27:37Z
dc.date.available2018-02-16T19:27:37Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113734
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 175-192).en_US
dc.description.abstractRecent advances in rapid fabrication technologies have given designers the ability to manufacture increasingly complex geometries with little increase in cost, making it easier than ever to build a robot. However, the process of designing a functional robot remains challenging. Robots are complex systems that tightly integrate mechanical, electrical, and software subsystems. As a result, traditional robot development often requires iterations of design and testing to ensure that the result is both functional and manufacturable. This thesis explores intuitive design tools for robot design and proposes composition as a design approach. We leverage a print-and-fold paradigm of manufacturing, which has been shown to enable functional robots to be created within a day. The main challenge in using composition is that in general, even if two modules function correctly individually, the combination of the two may not be a valid design. We therefore develop algorithms and systems for robot composition that guarantee validity of the design geometry and that check the resulting kinematics. Our main contributions include a database containing parameterized designs for printable joints and mechanisms, algorithms for composition of fold patterns and motion sequences that guarantee no self-intersection, automated generation of fabrication plans for multiple modes of print-and-fold fabrication, an interactive user interface in which users can compose custom robots and receive real-time feedback about their designs, and experimental verification in the form of functional mechanisms and robots. The results provide designers with a framework for rapid design exploration and bring us closer to a future of easy robot design and customization.en_US
dc.description.statementofresponsibilityby Cynthia Rueyi Sung.en_US
dc.format.extent192 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleComputational design of foldable robots via compositionen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1022850336en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record