MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparsity and computation reduction for high-rate visual-inertial odometry

Author(s)
Frey, Kristoffer M. (Kristoffer Martin)
Thumbnail
DownloadFull printable version (16.77Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Jonathan P. How and Theodore J. Steiner.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The navigation problem for mobile robots operating in unknown environments can be posed as a subset of Simultaneous Localization and Mapping (SLAM). For computationally-constrained systems, maintaining and promoting system sparsity is key to achieving the high-rate solutions required for agile trajectory tracking. This thesis focuses on the computation involved in the elimination step of optimization, showing it to be a function of the corresponding graph structure. This observation directly motivates the search for measurement selection techniques to promote sparse structure and reduce computation. While many sophisticated selection techniques exist in the literature, relatively little attention has been paid to the simple yet ubiquitous heuristic of decimation. This thesis shows that decimation produces graphs with an inherently sparse, partitioned super-structure. Furthermore, it is shown analytically for single-landmark graphs that the even spacing of observations characteristic of decimation is near optimal in a weighted number of spanning trees sense. Recent results in the SLAM community suggest that maximizing this connectivity metric corresponds to good information-theoretic performance. Simulation results confirm that decimation-style strategies perform as well or better than sophisticated policies which require significant computation to execute. Given that decimation consumes negligible computation to evaluate, its performance demonstrated here makes decimation a formidable measurement selection strategy for high-rate, realtime SLAM solutions. Finally, the SAMWISE visual-inertial estimator is described, and thorough experimental results demonstrate its robustness in a variety of scenarios, particularly to the challenges prescribed by the DARPA Fast Lightweight Autonomy program.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 147-151).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113745
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.