Show simple item record

dc.contributor.advisorFranz X. Kärtner and Erich P. Ippen.en_US
dc.contributor.authorHuang, Wenqian Ronnyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-03-02T21:39:41Z
dc.date.available2018-03-02T21:39:41Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113930
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 203-214).en_US
dc.description.abstractThis thesis discusses a series of advances toward - and resulting in - the demonstration of the first ultrafast THz-driven electron gun, a technology with the potential to deliver unprecedented electron beam quality to scientists studying matter at the ultrafast and ultrafast scale via electron diffraction or x-ray imaging. In Part 1, we discuss various advances in generation of high energy pulsed THz radiation, a spectral regime uniquely eective at accelerating electrons but historically lacking in ecient sources. In particular, through various improvements to the grating-based tilted pulse front (TPF) technique, we demonstrate a record conversion eciency of 1%. We also implement echelon-based TPF, achieving 3.5x higher eciency than grating-based TPF for short (~100 fs) pulses. Finally, we reuse the residual pump to obtain a recycled eciency around half to a quarter that of the original. This reduced eciency can be linked to spatio-spectral distortions in the residual pump, and we characterize these distortions to better understand the asymmetric dynamics of the THz generation process. In Part 2, we discuss the design, testing, and commissioning of an electron gun driven exclusively by THz radiation. The accelerating structure, capable of broad-band, dispersionless THz propagation and sub-wavelength confinement, is analyzed through electromagnetic simulations and experimental tests. We also characterize the accelerated electrons in absolute charge and spectrum as a function of emission phase and THz energy, while showing that the behavior matches well with theory and simulation. Our first-version THz gun delivers near 1 keV electrons accelerated by field strengths surpassing that of the best operational RF guns. The gun also delivers narrowband electron spectra which can already be used for low-energy electron diffraction.en_US
dc.description.statementofresponsibilityby Wenqian Ronny Huang.en_US
dc.format.extent214 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAll-optical electron acceleration with ultrafast THz pulsesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1023811320en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record