Show simple item record

dc.contributor.advisorFeng Zhang.en_US
dc.contributor.authorScott, David (David Arthur)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences.en_US
dc.date.accessioned2018-03-02T22:20:35Z
dc.date.available2018-03-02T22:20:35Z
dc.date.copyright2016en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113958
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Brain and Cognitive Sciences, February 2017.en_US
dc.descriptionCataloged from PDF version of thesis. "February 2017."en_US
dc.descriptionIncludes bibliographical references (pages 134-138).en_US
dc.description.abstractClass II CRISPR-Cas RNA programmable DNA endonucleases enable high efficiency genome editing across the biological diversity for research, industrial, and biomedical applications. Human genome editing with CRISPR-Cas just recently made its debut in human clinical trials and has immense therapeutic potential to fix disease-causing mutations at the level of DNA. Ensuring the integrity and safety of research, industrial, and biomedical applications of CRISPR-Cas necessitates efficient, versatile, and comprehensive methods to evaluate of the specificity of genome editing. Here, we optimize the efficiency and characterize the targeting specificity of SpCas9 to ensure robust cleavage activity while minimizing off-target activity in human cells. We characterize SpCas9 mismatch tolerance between the guide RNA and target, and provide data-driven design software to guide the selection of high fidelity Cas9 targets. We find that SpCas9 binding activity is not predictive of DNA cleavage, limiting the efficacy of Cas9 ChIP for unbiased evaluation of Cas9 off-target activity. Alternatively, we demonstrate that insert capture - insertion of short DNA fragments at double strand breaks (DSBs) by non-homologous end-joining (NHEJ) - provides unbiased genomewide identification of off-target cleavage by Cas9 as well as relative rates of indel, chromosomal rearrangement, and translocation accompanying NHEJ repair. However, insert capture is largely limited to use in model cell lines and is fundamentally limited in sensitivity due to labeling of low frequency errors in DSB repair. To directly label DSBs from cell culture or tissue samples, we adapted BLESS (direct in situ breaks labeling, enrichment on streptavidin and next-generation sequencing) and BLISS (Breaks Labeling In Situ and Sequencing) for unbiased genome-wide analysis of CRISPR-Cas specificity. Finally, we consider how human genetic variation will affect the targeting specificity of CRISPR-Cas endonucleases for therapeutic applications. Using the ExAC and 1000 Genomes datasets we find that human variation has important implications for Cas enzyme choice as well as target efficacy and safety. From this analysis, we provide a framework for the design of CRISPR-based therapeutics to maximize efficacy and safety across patient populations.en_US
dc.description.statementofresponsibilityby David Scott.en_US
dc.format.extent138 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBrain and Cognitive Sciences.en_US
dc.titleInterrogation of CRISPR-Cas targeting specificity for mammalian genome engineeringen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciences
dc.identifier.oclc1023435292en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record