Show simple item record

dc.contributor.advisorDarrell J. Irvine.en_US
dc.contributor.authorMoynihan, Kelly D. (Kelly Dare)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2018-03-02T22:20:40Z
dc.date.available2018-03-02T22:20:40Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113960
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 127-140).en_US
dc.description.abstractCheckpoint blockade with antibodies against CTLA-4 or PD-1 has demonstrated that an endogenous adaptive immune response can be stimulated to elicit durable tumor regressions in metastatic cancer, but these dramatic responses are confined to a minority of patients¹-³. This outcome is likely due in part to the complex network of immunosuppressive pathways present in advanced tumors, which necessitates the development of novel therapeutics and combination immunotherapies to generate a counter-directed network of pro-immunity signals⁴-⁸. In Chapters 2 and 3 of this thesis, we describe methods for enhancing T cell priming against tumor antigens via covalent modification of molecular vaccines to enhance lymphatic drainage, serum stability, or cytosolic access to improve presentation on MHC class I. In Chapter 4, we demonstrate a combination immunotherapy that recruits a diverse set of innate and adaptive effector cells, enabling robust elimination of large tumor burdens that to my knowledge have not previously been curable by treatments relying on endogenous immunity. Maximal anti-tumor efficacy required four components: a tumor antigen targeting antibody, an extended half-life IL-2⁹, anti-ƯPD-1, and a powerful T-cell vaccine¹⁰. This combination elicited durable cures in a majority of animals, formed immunological memory in multiple transplanted tumor models, and induced sustained tumor regression in an autochthonous BRraf[superscript V600E]/Pten[superscript -/-] melanoma model. Finally, in Chapter 5, we show preliminary data on combination immunotherapies used to treat antigenically heterogeneous tumors. Taken together, these data define design criteria for enhancing the immunogenicity of molecular vaccines and elucidate essential characteristics of combination immunotherapies capable of curing a majority of tumors in experimental settings typically viewed as intractable.en_US
dc.description.sponsorship"During my doctorate by the John and Fanny Hertz Foundation Fellowship (specifically the Wilson Talley Hertz Fellowship), the NSF Graduate Research Fellowship Program, and the Siebel Scholarship"--Page 141. "This thesis work was supported in part by the Koch Institute Support (core) grant P30-CA14051 from the National Cancer Institute, the US National Institutes of Health (NIH) grant CA174795, the Bridge Project partnership between the Koch Institute for Integrative Cancer Research and the Dana Farber-Harvard Cancer Center (DF-HCC), the V Foundation, the Ragon Institute, and the Howard Hughes Medical Institute"--Page 141.en_US
dc.description.statementofresponsibilityby Kelly D. Moynihan.en_US
dc.format.extent153 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleEngineering immunity : enhancing T Cell vaccines and combination immunotherapies for the treatment of canceren_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.identifier.oclc1023498072en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record