MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bond activation and catalysis by nontrigonal tricoordinate and tetracoordinate phosphorus compounds

Author(s)
Lin, Yi-Chun, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (24.69Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Alexander Radosevich.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Molecular distortion has a profound impact on the electronic structure and reactivity of molecules. This dissertation describes studies on E-H bond activation and catalytic reactivity of [sigma]³- and [sigma]⁴ -phosphorus compounds with distorted nontrigonal structures. Specifically, a rare example of N-H oxidative addition to a planar, C2v-symmetric P(III) center is described in Chapter 2. The kinetics and computational studies implicate a noncanonical, phosphorus-based electrophilic pathway for this transformation. As detailed in Chapter 3, a Cs-symmetric phosphorous triamide and its P-N cooperative reactivity are presented. B-H activation and catalytic imine hydroboration are achieved via the combination of the electrophilic phosphorus center and the basic anilide ligand moiety of this Cs-symmetric phosphorus compound. Finally, Chapter 4 extends the study of distorted phosphorus compounds to [sigma]⁴ -phosphorus molecules. Iminophosphoranes bearing constrained ligand platforms are synthesized and their distortion-induced B-H, B-O and Si-H bond activation reactivity are presented. This research provides insight into the influence of molecular symmetry on the reactivity of [sigma]³- and [sigma]⁴-phosphorus compounds and represents an initial step toward the discovery of new chemistry in other distorted phosphorus molecules.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2017.
 
Cataloged from PDF version of thesis. Vita.
 
Includes bibliographical references.
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113980
Department
Massachusetts Institute of Technology. Department of Chemistry
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.