MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward high efficiency radioisotope thermophotovoltaic system by spectral control

Author(s)
Wang, Xiawa
Thumbnail
DownloadFull printable version (24.68Mb)
Alternative title
Toward high efficiency RTPV
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Peter H. Fisher.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the design, modeling, and measurement results of a radioisotope thermophotovoltaic system (RTPV) using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. The RTPV generator aims to use the decay heat released by plutonium-238 fuel to heat up the emitter to incandescence and convert the infrared radiation to electricity in the TPV cell. With spectral control, high energy photons above the cell bandgap ([lambda] < 2.25 [mu]m for InGaAsSb cell) are emitted to produce more electrical power while low energy photons ([lambda] > 2.25 [mu]m) in far infrared are suppressed to reduce waste heat. We validated a system simulation using the measurements of a prototype system powered by an electrical heater equivalent to one plutonium fuel pellet. The thermal insulation design used multilayer insulation, which was found to be both efficient and chemically compatible with the photonic crystal emitter. We compared the system performance using a photonic crystal emitter to the one using a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, we further extended the design and performance estimates to real life RTPV generators optimized for both space and terrestrial applications. With the experimentally tested InGaAsSb TPV cell, the system efficiency can potentially reach above 8% with a specific power of 7.5 W/kg. With more advanced InGaAs monolithic-integrated-modules, the system efficiency can reach around 20% with a specific power above 17 W//kg.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 147-163).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/113984
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.