Show simple item record

dc.contributor.advisorScott Aaronson.en_US
dc.contributor.authorArkhipov, Alex (Aleksandr)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-03-02T22:22:12Z
dc.date.available2018-03-02T22:22:12Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/113995
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 103-106).en_US
dc.description.abstractWe investigate the computational complexity of quantum computing with identical noninteracting bosons, such as that in a linear optical system. We explore the challenges in building devices that implement this model and in certifying their correctness. In work done with Scott Aaronson, we introduce BOSONSAMPLING, a computational model of quantum linear optics [1]. We argue that the statistical distribution of outcomes cannot be reproduced by any classical device in a reasonable time span. This gives hands-on evidence of quantum advantage, that there are quantum phenomena are prohibitive to simulate in the classical world. Moreover, this quantum advantage is already present in limited optical systems, suggesting a lower bar to building devices that exhibit super-classical computation. We lay out the computational complexity argument for the classical difficulty of simulating BOSONSAMPLING. An efficient classical simulation would have unlikely complexity consequences for the polynomial hierarchy PH. We look into the difficulties in proving an analogous approximate result, including the conjectures that seem to be needed to push it through. We then discuss experimental implementations of BOSONSAMPLING. The scalability of current implementations is limited by various sources of noise that accumulate as the problem size grows. We prove a result [51 that pertains to the inexactnesses of components that comprise the linear optical network, giving bounds on the tolerances that suffice to obtain an output distribution close to the ideal one. Finally, we look at the challenge of certifying a BOSONSAMPLING device. We show the impossibility of one technique, to use a submatrix whose permanent is so large that its corresponding outcome appears very frequently. Joint work with Aaronson [21 argues that the outputs of a BOSONSAMPLING device can be verified not to come from a uniform distribution. Results on the statistical bunching of bosons obtained with Kuperberg [61 are another approach to certification. We further present a novel certification technique based on classically estimating the distribution of integer combinations of the boson counts.en_US
dc.description.statementofresponsibilityby Aleksandr Arkhipov.en_US
dc.format.extent106 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleQuantum computation with identical bosonsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1023803120en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record