dc.contributor.advisor | Kazumi Wada and Lionel C. Kimerling. | en_US |
dc.contributor.author | Gibbons, David M | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Materials Science and Engineering. | en_US |
dc.date.accessioned | 2018-03-12T19:29:17Z | |
dc.date.available | 2018-03-12T19:29:17Z | |
dc.date.issued | 2001 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/114086 | |
dc.description | Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2001. | en_US |
dc.description | Cataloged from PDF version of thesis. "June 2001." | en_US |
dc.description | Includes bibliographical references (pages 47-48). | en_US |
dc.description.abstract | GaN:Er is an attractive material for room temperature 1.54 pm luminescence enhancement devices for use in telecommunications because it does not experience thermal quenching at room temperature like Si:Er and can be electronically pumped. GaN:Er layers grown by molecular beam epitaxy (MBE) on single crystal substrates have shown excellent room temperature 1.54 [mu]m luminescence, but to integrate GaN:Er into microresonator devices it is necessary to grow a good quality GaN:Er film on an amorphous substrate. This thesis examines the optical properties and morphology of GaN:Er layers grown on Si₃N₄ and SiO₂ substrates, and evaluates two microresonator devices with incorporated GaN:Er layers. GaN:Er layers grown by MBE on SiO₂ and Si₃N₄ substrates were shown to give room temperature luminescence comparable to that of GaN:Er grown on (11 1)Si. GaN:Er layers grown on a buffered oxide etched Si₃N₄ substrate showed the best luminescence. The ability to grow good quality layers on amorphous substrates allows GaN:Er to be used in waveguide devices, the first of which studied was the microring resonator. Microring resonators were made by depositing a blanket GaN:Er layer on patterned Si₃N₄ microring structures. These structures were damaged, and transmission measurements were not possible. When looking at surface roughness measurements it appears that channel waveguide structures are unsuitable for GaN:Er grown on amorphous substrates, and so a ridge waveguide structure is proposed to lower this surface roughness scattering loss. A microcavity with a GaN:Er defect layer and a-Si/a-SiO₂ stacks was fabricated and tested for luminescence enhancement. The refractive index of GaN:Er was determined by reflectance measurements to be 2.1. The layer was not of uniform thickness which led to a broad resonance peak, but a distortion of the spectrum including a lower luminescence at the 1517 nm peak and a higher luminescence at the 1557 nm peak were observed, which suggests enhancement by the microcavity. | en_US |
dc.description.statementofresponsibility | by David M. Gibbons. | en_US |
dc.format.extent | 48 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Materials Science and Engineering. | en_US |
dc.title | Materials characterization and transmission analysis in erbium-doped gallium nitride microresonator structures | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.B. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Materials Science and Engineering | |
dc.identifier.oclc | 1027216686 | en_US |