MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Does the theory of parameterized conveciton apply to layered mantle convection?

Author(s)
Hsung, Jenwa
Thumbnail
DownloadFull printable version (3.127Mb)
Alternative title
Does the theory of parameterized convection apply to layered mantle convection?
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Bradford H. Hager.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
There are numerous models for convection of the Earth's mantle, the end cases of which are whole-mantle convection and layered convection. Heat flow is an important consideration in the evalution of these models. Simple thermal evolution models based on boundary layer theory have in the past been used to look at these models. However, insufficient attention has been paid to how well the theory applies. This was particularly uncertain for the case of layered convection with a radiogenically enriched lower mantle. I modified the finite-element code ConMan to include exponentially decaying internal heating so that the radiogenic isotopes in the lower layer would be accurately represented, and compared the experimental results of a one-layer case and a two-layer case to the theoretical solutions for those cases from boundary layer theory. It turns out that boundary layer theory does indeed seem to be accurate for the case of a two-layered convecting system with a radiogenic lower layer that produces exponentially decaying internal heating.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2000.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 70-71).
 
Date issued
2000
URI
http://hdl.handle.net/1721.1/114097
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.