MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of magnetic activity cycles in solar analogs using Solar - Stellar Spectrograph data

Author(s)
Doan, Duy Anh N
Thumbnail
DownloadFull printable version (3.411Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Amanda Bosh.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The Solar-Stellar Spectrograph (SSS) Project includes frequent observations of 30 - 50 Sun-like stars to address a wide variety of questions regarding the nature of stellar magnetic activity cycles. The magnetic activity cycles of 18 stars in the SSS project are analyzed using the Lomb Scargle method of least-squares spectral analysis. Periodograms reveal that out of 18 stars, 9 stars have one magnetic cycle and 6 stars have two magnetic cycles, with periods ranging from 2 years to 17 years. The remaining stars show significant variability but without pronounced periodicity. Most of the detected cycles have a false alarm probability (FAP) well below 10-3 The results for a number of stars are compared and confirmed with earlier observations by Mount Wilson Observatory's project, published by Baliunas et. al. (1995). Four more stars are added to the plot of activity cycle period - rotational period relation by Bohm-Vitense (2006), and they all lie on either the active sequence or the inactive sequence. This result, together with the fact that several stars have two different cycles lying on different sequences, lends more evidence to the hypothesis that stars have multiple dynamos but are dominated by one of them.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 30-31).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/114106
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.