MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Establishing an unambiguous connection between grain size and style of sediment transport in the Lower Niobrara River, Nebraska, USA

Author(s)
Leung, Vivian
Thumbnail
DownloadFull printable version (3.972Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
David Mohrig.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The transport of sediment is often separated into two components, bedload and suspended load. This division is important because bedload has a dominant control on channel morphology while suspended load dominates the formation of overbank deposits. Experimental data has related the style of sediment transport to mean flow conditions and bed topography. However direct application of this method in natural, sandy rivers is difficult due to large variabilities in flow. We propose a method for determining local flow conditions using the distribution of grain sizes traveling in the water column. Local shear velocity is found by fitting the Rouse equation for suspended sediment transport to measured sediment concentrations. Empirical criteria for distinguishing between suspended load and bedload are used to determine the fraction of sediment traveling in each respective mode. Application of this method to the Niobrara River, Nebraska, shows that -80 % of the sediment is traveling as suspended load, ~ 20 % is traveling in a transitional mode between bedload and suspended load and less than 1 % is traveling as pure bedload. We establish an unambiguous connection between grain size and the style of sediment transport and highlight the importance of the transitional transport mode in natural systems.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2006.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 22).
 
Date issued
2006
URI
http://hdl.handle.net/1721.1/114120
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.