Show simple item record

dc.contributor.advisorKerry A. Emanuel.en_US
dc.contributor.authorWong, Valerie (Valerie Wan Chi)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2018-03-12T19:31:21Z
dc.date.available2018-03-12T19:31:21Z
dc.date.copyright2006en_US
dc.date.issued2006en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/114135
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2006.en_US
dc.descriptionCataloged from PDF version of thesis. Some pages in the original thesis contain text that runs off the edge of the page.en_US
dc.descriptionIncludes bibliographical references (pages 36-37).en_US
dc.description.abstractThis project explores whether cloud top altimetry can be used as an accurate and reliable means of estimating the intensity of tropical cyclones. Professor Kerry A. Emanuel developed the theory that is under investigation. His theory aims to calculate the peak surface wind speed in hurricanes using only three parameters, all of which can be collected from satellite imagery: cloud top height, sea surface temperature and cloud top temperature. Cloud top heights for selected hurricanes were obtained from the ICESat, and points were identified where the ICESat may have traversed the hurricanes. These points were compared with IR images to confirm the intersection of the ICESat track and the hurricane tracks. Out of 18 hurricanes examined, four provided feasible points to test this new technique. Two of these points were from hurricanes that were at the end stage of their life cycle; these two data points were discarded. Data from the two usable data points were compared to the recorded wind speeds from Unisys. It seems that the new method is overestimating the maximum surface wind speed by less than 10%. Two data points are insufficient for conclusively validating this technique. However, this project has established a viable method for gathering and analyzing altimetry data, providing a basis for further testing of the theory.en_US
dc.description.statementofresponsibilityby Valerie Wong.en_US
dc.format.extent168 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleFeasibility of using cloud top altimetry for estimating tropical cyclone intensity estimationen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc1027724677en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record