dc.contributor.author | Wang, Yejun | |
dc.contributor.author | Nagarajan, Mallika | |
dc.contributor.author | Uhler, Caroline | |
dc.contributor.author | Shivashankar, G. V. | |
dc.date.accessioned | 2018-03-14T18:31:29Z | |
dc.date.available | 2018-03-14T18:31:29Z | |
dc.date.issued | 2017-06 | |
dc.date.submitted | 2017-06 | |
dc.identifier.issn | 1059-1524 | |
dc.identifier.issn | 1939-4586 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/114156 | |
dc.description.abstract | Extracellular matrix signals from the microenvironment regulate gene expression patterns and cell behavior. Using a combination of experiments and geometric models, we demonstrate correlations between cell geometry, three-dimensional (3D) organization of chromosome territories, and gene expression. Fluorescence in situ hybridization experiments showed that micropatterned fibroblasts cultured on anisotropic versus isotropic substrates resulted in repositioning of specific chromosomes, which contained genes that were differentially regulated by cell geometries. Experiments combined with ellipsoid packing models revealed that the mechanosensitivity of chromosomes was correlated with their orientation in the nucleus. Transcription inhibition experiments suggested that the intermingling degree was more sensitive to global changes in transcription than to chromosome radial positioning and its orientations. These results suggested that cell geometry modulated 3D chromosome arrangement, and their neighborhoods correlated with gene expression patterns in a predictable manner. This is central to understanding geometric control of genetic programs involved in cellular homeostasis and the associated diseases. | en_US |
dc.description.sponsorship | Austrian Science Fund (Y 903-N35) | en_US |
dc.description.sponsorship | Mechanobiology Institute, Singapore | en_US |
dc.description.sponsorship | Singapore. Ministry of Education (Academic Research Fund Tier3 MOE2012-T3-1-001) | en_US |
dc.publisher | American Society for Cell Biology (ASCB) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1091/MBC.E16-12-0825 | en_US |
dc.rights | Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | American Society for Cell Biology | en_US |
dc.title | Orientation and repositioning of chromosomes correlate with cell geometry–dependent gene expression | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Wang, Yejun, et al. “Orientation and Repositioning of Chromosomes Correlate with Cell Geometry–dependent Gene Expression.” Molecular Biology of the Cell, edited by Alex Dunn, vol. 28, no. 14, July 2017, pp. 1997–2009. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Uhler, Caroline | |
dc.relation.journal | Molecular Biology of the Cell | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-02-23T19:31:38Z | |
dspace.orderedauthors | Wang, Yejun; Nagarajan, Mallika; Uhler, Caroline; Shivashankar, G. V. | en_US |
dspace.embargo.terms | N | en_US |
mit.license | PUBLISHER_CC | en_US |