MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decarbonization related to continental arc magmatism as a possible mechanism for Cretaceous warming

Author(s)
Brunner, Anna Elizabeth
Thumbnail
DownloadFull printable version (4.909Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.
Advisor
Oliver Jagoutz.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Elevated concentrations of CO₂ have been proposed as the reason that the Cretaceous climate was 6-14°C warmer than the present, however the source of Cretaceous CO₂ is unknown [Barron, 1983]. This study examines the possibility of continental arc magmatism as a mechanism for CO2 release, specifically as a volatile produced during crustal assimilation and contact metamorphism of carbonates around plutons. Bedrock maps of the North American Cordillera (a region of active continental arc magmatism during the Cretaceous), the relative locations of the carbonates, the Cretaceous plutons, and the calculated "decarbonation zones"around the plutons. These measurements were then input in a thermal and petrologoical model in order to estimate the quantity of CO₂ released by continental arc magmatism. Testing a number of cases with varying parameters, the model found the arc-magmatism-induced temperature difference between the present and Cretaceous global climates to have a lower limit of [Delta]T < 1°C and an upper limit of 5.1 < [Delta]T < 12.3°C. Decarbonation from continental arc magmatism is shown to be a possible mechanism of paleoclimatic warming, and more work is required to either confirm or refute the hypothesis.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2012.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 53-56).
 
Date issued
2012
URI
http://hdl.handle.net/1721.1/114357
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Publisher
Massachusetts Institute of Technology
Keywords
Earth, Atmospheric, and Planetary Sciences.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.