Show simple item record

dc.contributor.authorAxelrod, Allan
dc.contributor.authorCarlone, Luca
dc.contributor.authorChowdhary, Girish
dc.contributor.authorKaraman, Sertac
dc.date.accessioned2018-04-23T13:57:23Z
dc.date.available2018-04-23T13:57:23Z
dc.date.issued2016-12
dc.date.submitted2016-12
dc.identifier.isbn978-1-5090-1837-6
dc.identifier.urihttp://hdl.handle.net/1721.1/114854
dc.description.abstractThe key challenge for learning-based autonomous systems operating in time-varying environments is to predict when the learned model may lose relevance. If the learned model loses relevance, then the autonomous system is at risk of making wrong decisions. The entropic value at risk (EVAR) is a computationally efficient and coherent risk measure that can be utilized to quantify this risk. In this paper, we present a Bayesian model and learning algorithms to predict the state-dependent EVAR of time-varying datasets. We discuss applications of EVAR to an exploration problem in which an autonomous agent has to choose a set of sensing locations in order to maximize the informativeness of the acquired data and learn a model of an underlying phenomenon of interest. We empirically demonstrate the efficacy of the presented model and learning algorithms on four real-world datasets.en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CDC.2016.7799166en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleData-driven prediction of EVAR with confidence in time-varying datasetsen_US
dc.typeArticleen_US
dc.identifier.citationAxelrod, Allan, et al. "Data-Driven Prediction of EVAR with Confidence in Time-Varying Datasets." 2016 IEEE 55th Conference on on Decision and Control (CDC), 12-14 December, 2016, Las Vegas, Nevada, IEEE, 2016, pp. 5833–38.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorCarlone, Luca
dc.contributor.mitauthorKaraman, Sertac
dc.relation.journal2016 IEEE 55th Conference on Decision and Control (CDC)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-03-22T17:08:11Z
dspace.orderedauthorsAxelrod, Allan; Carlone, Luca; Chowdhary, Girish; Karaman, Sertacen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1884-5397
dc.identifier.orcidhttps://orcid.org/0000-0002-2225-7275
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record