Show simple item record

dc.contributor.advisorGregory Stephanopoulos.en_US
dc.contributor.authorShin, Jieun, S.M. Massachusetts Institute of Technologyen_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.date.accessioned2018-04-27T18:10:49Z
dc.date.available2018-04-27T18:10:49Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115031
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 77-82).en_US
dc.description.abstractThis thesis assesses the economic viability and commercial potential of a lab-scale microbial technology to produce lactic acid (LA), which was developed as a novel technology option for organic waste treatment. Among various available technologies for the separation and purification of LA, the method of esterification-hydrolysis with reactive distillation was selected for this assessment. The process from organic waste to high-purity LA was designed and modeled using Aspen Plus, from which material and energy balances, equipment costs, and utility costs were derived. An economic performance assessment model was developed to estimate capital and operating expenses as well as net present value (NPV), for evaluating the economic feasibility under various scenarios. Monte Carlo techniques were incorporated into the model to take into account the effect of identified uncertainties on the economic performance, which generates distribution profiles rather than single-value estimates. The baseline NPV for polymer-grade LA (99%) production was estimated to be USD 1.95 million in the U.S. and USD 1.31 million in India. Even though the estimated capital and operating expenses are much lower in India, the process was found to be less profitable than in the U.S. The main reason for this is because landfill tipping fees cannot be relied on as a stable revenue source in India. Moreover, two other applications, which this technology could be potentially commercialized for, were also evaluated using the developed models, and the economic performance of each application was compared. Finally, this thesis proposes a Technology Commercialization Assessment Matrix (TCAM), based on the results and insights gained from the assessment conducted.en_US
dc.description.statementofresponsibilityby Jieun Shin.en_US
dc.format.extent82 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleBiological conversion of organic municipal solid waste to lactic acid : a techno-economic performance assessment study for commercializationen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Society
dc.contributor.departmentTechnology and Policy Program
dc.identifier.oclc1031850345en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record