MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scanning the skeleton of the 4D F-theory landscape

Author(s)
Taylor IV, Washington; Wang, Yinan
Thumbnail
Download13130_2018_Article_7477.pdf (1.071Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Using a one-way Monte Carlo algorithm from several different starting points, we get an approximation to the distribution of toric threefold bases that can be used in four-dimensional F-theory compactification. We separate the threefold bases into “resolvable” ones where the Weierstrass polynomials (f, g) can vanish to order (4, 6) or higher on codimension-two loci and the “good” bases where these (4, 6) loci are not allowed. A simple estimate suggests that the number of distinct resolvable base geometries exceeds 103000, with over 10250 “good” bases, though the actual numbers are likely much larger. We find that the good bases are concentrated at specific “end points” with special isolated values of h1,1 that are bigger than 1,000. These end point bases give Calabi-Yau fourfolds with specific Hodge numbers mirror to elliptic fibrations over simple threefolds. The non-Higgsable gauge groups on the end point bases are almost entirely made of products of E8, F4, G2 and SU(2). Nonetheless, we find a large class of good bases with a single non-Higgsable SU(3). Moreover, by randomly contracting the end point bases, we find many resolvable bases with h1,1(B) ∼ 50-200 that cannot be contracted to another smooth threefold base. Keywords: Differential and Algebraic Geometry; F-Theory; Superstring Vacua
Date issued
2018-01
URI
http://hdl.handle.net/1721.1/115054
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Journal of High Energy Physics
Publisher
Springer Berlin Heidelberg
Citation
Taylor, Washington and Yi-Nan Wang. "Scanning the skeleton of the 4D F-theory landscape." Journal of High Energy Physics 2018 (January 2018): 111 © 2018 The Authors
Version: Final published version
ISSN
1029-8479

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.