MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An analysis of the spreading of radionuclides from a vent of an offshore floating nuclear power plant

Author(s)
Briccetti, Angelo (Angelo J.)
Thumbnail
DownloadFull printable version (5.464Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Jacopo Buongiorno.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The offshore floating nuclear power plant (OFNP), is a new power plant design which provides for both increased safety and extra barriers to separate its radioactive material from the public. This design will minimize the probability of a severe accident leading to a release of radioactive material, but as always a release must still be planned for. The offshore siting of an OFNP allows for increased distance to human populations in addition to extra filtering of released radioactive material. This study will look at the potential consequences of a severe accident onboard an OFNP eventually leading to a vent and environment contamination. Three steps of the accident and fallout will be analyzed: 1) Accident and vent composition 2) The transport of radioactive material in the ocean via a plume and ocean diffusion 3) Sedimentation of radioactive cesium on the coast One of the major advantages of an OFNP over a terrestrial plant is that the extra distance and barriers provided by the OFNP will decrease the impact of a nuclear accident. This study will begin to quantify that effect. This is only the first attempt at exploring the effects of a release, and has large conservatisms built into the analysis even in the best estimate case. In the future more detailed work will be done to reach a more accurate solution, particularly for specific siting locations.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2015.
 
"June 2015." Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 70-71).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/115452
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.