Show simple item record

dc.contributor.advisorRamesh Raskar.en_US
dc.contributor.authorMohit, Mrinalen_US
dc.contributor.otherProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.date.accessioned2018-05-17T19:07:16Z
dc.date.available2018-05-17T19:07:16Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115457
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 68-73).en_US
dc.description.abstractHistopathology is the microscopic examination of processed human tissues to diagnose conditions like cancer, tuberculosis, anemia and myocardial infractions. The diagnostic procedure is, however, very tedious, time-consuming and prone to misinterpretation. It also requires highly trained pathologists to operate, making it unsuitable for large-scale screening in resource-constrained settings, where experts are scarce and expensive. In this thesis, we present a software system for automated screening, backed by deep learning algorithms. This cost-effective, easily-scalable solution can be operated by minimally trained health workers and would extend the reach of histopathological analyses to settings such as rural villages, mass-screening camps and mobile health clinics. With metastatic breast cancer as our primary case study, we describe how the system could be used to test for the presence of a tumor, determine the precise location of a lesion, as well as the severity stage of a patient. We examine how the algorithms are combined into an end-to-end pipeline for utilization by hospitals, doctors and clinicians on a Software as a Service (SaaS) model. Finally, we discuss potential deployment strategies for the technology, as well an analysis of the market and distribution chain in the specific case of the current Indian healthcare ecosystem.en_US
dc.description.statementofresponsibilityby Mrinal Mohit.en_US
dc.format.extent73 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectProgram in Media Arts and Sciences ()en_US
dc.titleAutomated histopathological analyses at scaleen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.identifier.oclc1035390468en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record