Show simple item record

dc.contributor.advisorCynthia Barnhart and Patrick Jaillet.en_US
dc.contributor.authorGalle, Virgileen_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2018-05-23T15:03:45Z
dc.date.available2018-05-23T15:03:45Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115592
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 175-182).en_US
dc.description.abstractContainer terminals, where containers are transferred between different modes of transportation both on the seaside and landside, are crucial links in intercontinental supply chains. The rapid growth of container shipping and the increasing competitive pressure to lower rates result in demand for higher productivity. In this thesis, we design new models and methods for the combinatorial optimization problems representing storage yard operations in maritime container terminals. The goal is to increase the efficiency of yard cranes by decreasing unproductive container moves (also called relocations). We consider three problems with applicability to real-time operations. First, we study the container relocation problem that involves finding a sequence of container moves that minimizes the number of relocations needed to retrieve all containers, while respecting a given order of retrieval. We propose a new binary integer program model, perform an asymptotic average case analysis, and show that our methods can apply to other storage systems where stacking occurs. Second, we relax the assumption that the full retrieval order of containers is known in advance and study the stochastic container relocation problem. We introduce a new model, compare it with an existing one, and develop two new algorithms for both models based on decision trees and new heuristics. We show that techniques in this chapter apply more generally to finite horizon stochastic optimization problems with bounded cost functions. Third, we consider the integrated container relocation problem and yard crane scheduling problem to find an optimal sequence of scheduled crane moves that perform the required container movements. Taking into account practical constraints, we present a new model, propose a binary integer program using a network flow-type formulation, and design an efficient heuristic procedure for real-time operations based on properties of our mathematical formulation. We relate this problem to pick-up and delivery problems with a single vehicle and capacities at every node. In all three chapters, the efficiency of all our algorithms are shown through extensive computational experiments on available problem instances from the literature and/or on real data.en_US
dc.description.statementofresponsibilityby Virgile Galle.en_US
dc.format.extent245 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleOptimization models and methods for storage yard operations in maritime container terminalsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1036985395en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record