Show simple item record

dc.contributor.advisorKrystyn J. Van Vliet.en_US
dc.contributor.authorSwallow, Jessica Gen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2018-05-23T15:04:22Z
dc.date.available2018-05-23T15:04:22Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115606
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractElectrochemical energy conversion and storage devices including solid oxide fuel cells (SOFCs) and lithium ion batteries (LIBs) are enabled by materials known as "non-stoichiometric oxides" that contain large concentrations of point defects such as oxygen or lithium vacancies. While this non-stoichiometry provides the essential functional properties of ionic conductivity or reactivity that make these materials useful, it also tends to couple to material volume through the effect of chemical expansion. Chemical expansion, or volume coupled to defect concentration, is in turn tied to mechanical variables including stress, strain, and elastic constants. This electrochemomechanical coupling, or interaction between functional properties, defect chemistry, and mechanical variables, can have important consequences for devices operated in extreme environments, where unexpected stress may lead to fracture, or well-engineered strain may enhance device efficiency. Such effects are particularly important in thin film devices, where strain engineering is within reach, undesired fracture can devastate performance, and defect chemistry and related properties can differ from bulk systems. In this thesis, we present a concerted investigation of chemomechanical coupling, including interactions between material chemistry, environmental conditions, stress, strain, and mechanical properties, for films of the model material PrxCe1-xO2-[delta] (PCO) that is a fluorite-structured oxide relevant to SOFC applications. PCO is an excellent model system because of its well-established defect chemistry model and known thermal and chemical expansion coefficients. The thesis begins by first characterizing key chemomechanical effects in PCO, including electrochemically induced high temperature actuation and nonstoichiometry- dependent mechanical properties that are modulated by environmental conditions including temperature and oxygen partial pressure. We then explore the mechanisms and microstructural contributions to these effects via computational modeling and high temperature transmission electron microscopy, identifying ways in which chemomechanical effects in thin film non-stoichiometric oxides differ from those in bulk. Finally, we extend the experimental and computational methods developed in the thesis to characterizing similar effects in Li-storage materials, demonstrating the broad applicability of results across the classes of non-stoichiometric oxides. We first describe an experimental study in which we developed a novel method of detecting chemical expansion on short time scales in the model system PCO and characterized material deformation for a range of conditions of temperature and effective oxygen partial pressure (pO2). In this method, electrically-stimulated chemical expansion caused mechanical deflection of a substrate, an effect that for PCO was enhanced for elevated temperatures or reducing conditions ...en_US
dc.description.statementofresponsibilityby Jessica G. Swallow.en_US
dc.format.extent246 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleChemomechanics of non-stoichiometric oxide films for energy conversionen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc1036986348en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record