MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the electrolytic nature of molten aluminum and rare earth oxides

Author(s)
Nakanishi, Bradley Rex
Thumbnail
DownloadFull printable version (20.68Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Antoine Allanore.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The electrolytic cell method and its application for Gibbs energy measurement in high temperature, concentrated ionic melts was investigated. Previous challenges related primarily to signal interpretation during decomposition voltage measurement have hindered determination of Gibbs energy. An electrolytic cell method is proposed herein utilizing the sensitivity of large amplitude alternating current voltammetry, which enabled precise measurement of chemical potential during electrolytic decomposition. A novel, containerless approach for electrochemical study of high temperature, reactive electrolytes in a molten pendant droplet is described. For the first time, melts of pure alumina, lanthana and yttria were electrolytically decomposed to metal alloy and oxygen gas using iridium electrodes. The method was validated in molten alumina. Systematic investigation of the half-cell reactions corresponding to oxygen evolution and aluminum deposition revealed their electrochemical nature. Measurements of the chemical potential and partial molar entropy of aluminum in an iridium-rich, binary alloy liquid were obtained in close agreement with previous predictions. The method was extended to the pseudo-binary system molten lanthana-yttria. The results revealed selective extraction of lanthanum and indicated that molten lanthana-yttria does not exhibit ideal mixing behavior, contradicting previous predictions. However, data interpretation in multicomponent electrolyte compositions were challenged primarily by a lack of thermodynamic data for the attendant alloy system and influence of dissolved oxygen on the observed alloy composition. This work represents a pioneering effort for electrochemical operation in molten refractory oxides at temperatures above 2000 K.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/115607
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.