Show simple item record

dc.contributor.advisorErich P. Ippen.en_US
dc.contributor.authorShtyrkova, Katiaen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-05-23T15:06:01Z
dc.date.available2018-05-23T15:06:01Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115641
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 191-205).en_US
dc.description.abstractThe field of integrated photonics has already revolutionized optical communications and is making rapid advances in signal processing, light detection and ranging, optical sensing, bio-medical diagnostics and imaging, and military-related applications. Large and complex radio-frequency and optical systems could be potentially replaced with compact, power-ecient, alignment-free, cost-effectively mass-produced integrated photonics components. An on-chip high repetition-rate mode-locked laser is a key enabler of many integrated photonics applications, such as all-optical sampling, on-chip frequency combs, low phase noise microwave oscillators, photonic ADCs and others. First-ever fully-integrated on-chip mode-locked lasers are demonstrated in this work, fabricated using a CMOS-compatible process. The lasers have no o-chip elements other than the pump laser, which could be easily co-packaged. 1900nm and 1550nm lasers are designed, fabricated and characterized. For 1900nm central wavelength lasers, several dierent laser configuration are demonstrated, with repetition rates of 690MHz and 1.2GHz. Q-switched, Q-switch-mode-locked, and CW mode-locked laser operation was demonstrated, with the shortest pulse durations of 250fs. The smallest foot-print of one laser is 23.6mm x0.78mmx0.6mm. In addition, first-ever fully-on-chip CMOS-compatible mode-locking element based on Kerr nonlinearity is demonstrated for 1550nm and 1900nm laser wavelengths. Demonstrated modulation depths for 1900nm and 1550nm mode-locking devices are 9% and 2.5% respectively. The work in this thesis presents the first-ever demonstration of fully-onchip CMOS compatible mode-locking device, as well as first-ever CMOS-compatible mode-locked lasers with no o-chip components.en_US
dc.description.statementofresponsibilityby Katia Shtyrkova.en_US
dc.format.extent205 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFully Integrated CMOS-compatible mode-locked lasersen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1036987707en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record