Show simple item record

dc.contributor.advisorTomaso Poggio.en_US
dc.contributor.authorZhang, Chiyuan, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-05-23T15:06:06Z
dc.date.available2018-05-23T15:06:06Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115643
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 135-150).en_US
dc.description.abstractIn the recent years deep learning has witnessed successful applications in many different domains such as visual object recognition, detection and segmentation, automatic speech recognition, natural language processing, and reinforcement learning. In this thesis, we will investigate deep learning from a spectrum of different perspectives. First of all, we will study the question of generalization, which is one of the most fundamental notion in machine learning theory. We will show how, in the regime of deep learning, the characterization of generalization becomes different from the conventional way, and propose alternative ways to approach it. Moving from theory to more practical perspectives, we will show two different applications of deep learning. One is originated from a real world problem of automatic geophysical feature detection from seismic recordings to help oil & gas exploration; the other is motivated from a computational neuroscientific modeling and studying of human auditory system. More specifically, we will show how deep learning could be adapted to play nicely with the unique structures associated with the problems from different domains. Lastly, we move to the computer system design perspective, and present our efforts in building better deep learning systems to allow efficient and flexible computation in both academic and industrial worlds.en_US
dc.description.statementofresponsibilityby Chiyuan Zhang.en_US
dc.format.extent150 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDeep learning and structured dataen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1036987853en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record