MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mitigation of sickle cell crises using chaos-based analysis

Author(s)
Atsaves, Louis
Thumbnail
DownloadFull printable version (3.359Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Wesley Harris.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Sickle-cell diseased persons suffer finite pain episodes (luring their lifetime, which are termed sickle cell crises. Using a sickle cell blood flow model, we mathematically demonstrate that the onset of a sickle cell crisis is chaotic. We further show that sickle cell crises may be mitigated by manipulating certain physiological parameters, namely the partial pressure of oxygen at 50% hemoglobin ([mathematical formula]%) and the kinetic dissociation rate of hemoglobin (kub) These physiological parameters control the chaotic nature of sickle cell crises and have the ability to transfer a person from a crisis state to a non-crisis state. We determine that sickle cell crises may only be mitigated within a critical time period (0 </- t </- 2.5hrs) after the onset of a sickle cell crisis. Based on our analysis, we classify three stages of a sickle cell crisis as weak chaos, strong chaos, and hyperchaos; which range from light to intense pain. Drugs may be developed, based on our analysis, to target these physiological parameters and mitigate sickle cell crises at its onset.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 39).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/115646
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.