MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aerodynamic drag on deformable and active structures in high Reynolds number conditions

Author(s)
Guttag, Mark A. (Mark Andrew)
Thumbnail
DownloadFull printable version (21.39Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Pedro M. Reis.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We explore the effect of topography on the aerodynamic behavior of deformable structures, at high Reynolds numbers. We first introduce a novel mechanism to control the aerodynamic drag on cylinders, in the critical Reynolds number regime. We created both axially grooved and dimpled specimens, comprised of latex membranes stretched over rigid acrylic skeletons. By decreasing the internal pressure of the specimens, the latex stretched inward thus changing the shape of the surface. Using a combination of finite element simulations and precision mechanical experiments, we characterized the relationship between the mechanical deformation in the membrane and pneumatic loading. Wind tunnel experiments were used to explore how changing several geometric parameters, of both grooved and dimpled cylinders, affected the aerodynamic performance. We also used the tunable nature of the specimens to automatically control the dependence of the drag coefficient on the Reynolds number. Additionally, we studied the effect of holes in thin flexible strips at high Reynolds numbers. In this investigation, instead of controlling the deformation of the specimens, we modified the initial geometry by cutting holes in strips and examined the deformation under uniform aerodynamic loading. We used a combined experimental and numerical approach to study the effect of perforation on the drag coefficient. The work presented in this thesis, represents an important first step towards utilizing deformation to control the aerodynamic performance of structures.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 141-150).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/115720
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.