Show simple item record

dc.contributor.advisorAngela M. Belcher.en_US
dc.contributor.authorOhmura, Jacqueline (Jacqueline Frances)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biological Engineering.en_US
dc.date.accessioned2018-05-23T16:33:38Z
dc.date.available2018-05-23T16:33:38Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115761
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Biological Engineering, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 136-146).en_US
dc.description.abstractFrom the fabrication of fine chemicals, to the increasing attainability of a non-petrochemical based energy infrastructure, catalysts play an important role in meeting the increasing energy and consumable demands of today without compromising the global health of tomorrow. Development of these catalysts relies on the fundamental understanding of the effects individual catalyst properties have on catalytic function. Unfortunately, control, and therefore deconvolution of individual parameter effects, can be quite challenging. Due to the nanoscale formfactor and wide range of available surface chemistries, biological catalyst fabrication affords one solution to this challenge. To this end, this work details the processing of M13 bacteriophage as a synthetic toolbox to modulate key catalyst parameters to elucidate the relationship between catalyst structure and performance. With respect to electrocatalysis, a biotemplating method for the development of tunable 3D nanofoams is detailed. Viral templates were rationally assembled into a variety of genetically programmable architectures and subsequently templated into a variety of material compositions. Subsequently, this synthetic method was employed to examine the effects of nanostructure on electro-catalytic activity. Next, nanoparticle driven heterogeneous catalysis was targeted. Nanoparticle-protein binding affinities were leveraged to explore the relationship between nanoparticles and their supports to identify a selective, base free alcohol oxidation catalyst. Finally, the surface proteins of the M13 virus were modified to mirror homogeneous copper-ligand chemistries. These viruses displayed binding pocket free copper complexation and catalytic efficacy in addition to recyclability and solvent robustness. Subsequently, the multiple functional handles of the viron were utilized to create catalytic ensembles of varying ratios. Single and dendrimeric TEMPO (4-Carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl) were chemically conjugated to the surface of several catalytically active phage clones further tailoring catalytic function. Taken together, these studies provide strong evidence of the utility of biologically fabricated materials for catalytic design.en_US
dc.description.statementofresponsibilityby Jacqueline Ohmura.en_US
dc.format.extent153 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiological Engineering.en_US
dc.titleUtilizing viruses to probe the material process - structure - property relationship : controlling catalytic properties via protein engineering and nanoscale synthesisen_US
dc.title.alternativeControlling catalytic properties via protein engineering and nanoscale synthesisen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.identifier.oclc1036987189en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record