MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design-space and scalable technology for GaN based power transistors

Author(s)
Piedra, Daniel, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (19.38Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tomás Palacios.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As silicon devices approach their intrinsic material and technological limit, there is an opportunity for alternative semiconductor materials to push the performance of electronics forward. Gallium nitride (GaN) has demonstrated very promising performance for advanced electronics, but there is still room for improvement. This thesis discusses several new transistor designs to improve the performance of GaN-based power devices as well as demonstrations of their scaling potential and integration capability with silicon. Specifically, we have developed a wide-periphery GaN fin-based high electron mobility transistor process for power switching. The process was developed with emphasis on the passivation, field plates, gate periphery scaling, and packaging. A CMOS compatible GaN processing technology on 200-mm wafers was developed and optimized, with particular attention focused on the recess etching through the wide-bandgap AlGaN barrier to reduce the contact resistance. A study of a heterogeneous integration technology to integrate GaN and Si devices was conducted. This involved an approach to monolithically integrate GaN and Si devices which used a bonded SOI wafer with a Si (111) substrate and Si (100) device layer with windows opened to access the (111) layer to selectively grow GaN. Characterization of the transistor properties in GaN windows of different sizes was performed to qualify the optimal window size for power devices in future integrated systems.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/115772
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.