MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development in utilizing singlet fission and triplet-triplet annihilation to improve solar cell efficiency

Author(s)
Wu, Tony Chang-Chi
Thumbnail
DownloadFull printable version (16.51Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Marc A Baldo.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Our main energy source are burning fossil fuels. Solar energy is a clean, sustainable energy source that does not emit greenhouse gas that causes global warming. In this thesis, singlet fission and triplet-triplet annihilation would be discussed and studied to increase solar cell power conversion efficiency. Singlet fission splits a singlet exciton into two lower energy triplet excitons. This energy down conversion is efficient and have shown near 200% triplet exciton yield. With energy down conversion, thermalization loss in solar cell could be reduced. We have shown singlet fission in tetracene, a suitable down conversion fission material to pair with silicon solar cell, up to 127% of internal quantum yield. To integrate tetracene as the energy down converter for silicon, we have demonstrated triplet exciton transfer from tetracene to silicon with WNx passivation. To show triplet exciton transfer, a spectrally resolved magnetic field effect measurement setup was designed and built. We have also demonstrated a metal-free, solid state optical up conversion system. This is in contrast with most optical up conversion system that uses heavy metal for triplet generation and are limited to solution fabrication based on material restrictions. The novel optical up conversion system provided cheaper material choices as well as better fabrication freedom and potentially longer device operation lifetime.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 107-113).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/115783
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.