MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of N-heterocyclic carbene ligands for nanomaterials in aqueous media and expanding the interface of metal-organic framework (MOF) and polymer chemistry via polyMOFs

Author(s)
MacLeod, Michelle (Michelle Jeanette)
Thumbnail
DownloadFull printable version (37.51Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Jeremiah A. Johnson.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the field of coordination chemistry, there are many standard organic ligand designs that are optimized for their ease of synthesis as well as established and favorable properties. Nevertheless, there is still room to add new ligand classes to the toolbox for specific applications. This thesis focuses on expansion of the types of ligands available for (1) metallic nanomaterial surface modification and (2) metal-ligand driven supramolecular assembly. (1) Surface ligands are typically used for surface passivation, imparting new properties such as solubility, or introducing a functional handle for further modification. The different demands in many diverse fields such as catalysis, electronics, and biomedicine necessitate that ligands interact strongly with surfaces and are structurally versatile. Herein, we advance N-heterocyclic carbenes (NHCs) as a new class of surface ligands to complement other established classes such as thiols, carboxylic acids, phosphines, ammonium salts, and phosphine oxides. Our studies have focused on ligand design for gold nanoparticles (NPs) and nanorods (NRs) in aqueous media. Using a polyethylene glycol (PEG)-conjugated NHC strategy, we demonstrate the first example of water-soluble NHC-stabilized Au-NPs. We then develop a bidendate NHC-thiol to modify gold NRs for photothermal therapy. (2) We examine the interface between amorphous polymers and crystalline metal organic frameworks (MOFs) in an emerging class of materials called polyMOFs. PolyMOFs use polymer ligands as their building blocks, opening the door to new material properties. In our work, we have developed a strategy for the synthesis of addressable, unimolecular polyMOF-forming oligomers using iterative-exponential growth, which has allowed us to study unique structure-property relationships of polyMOFs. Furthermore, we have developed pre- and post- synthetic modification strategies for polyMOF based materials.
Description
Thesis: Ph. D. in Inorganic Chemistry, Massachusetts Institute of Technology, Department of Chemistry, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/115796
Department
Massachusetts Institute of Technology. Department of Chemistry.
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Chemistry - Ph.D. / Sc.D.
  • Chemistry - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.