Show simple item record

dc.contributor.advisorTroy Van Voorhis.en_US
dc.contributor.authorKohn, Alexander Wolfeen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2018-05-23T16:35:42Z
dc.date.available2018-05-23T16:35:42Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/115806
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Chemistry, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 89-102).en_US
dc.description.abstractIn this thesis, we investigate methods and systems for understanding the electronic properties of a variety of systems relevant to organic photovoltaics. The second chapter examines how to predict the radiative and non-radiative decay rates of a large family of naphthalene derivatives. Naphthalene is a common building block in many organic electronic devices and possesses complex photophysics that are difficult to capture. Principally using time-dependent density functional theory, we are able to reproduce the experimental rates and, moreover, the fluorescence quantum yield, quite accurately. The next chapter then goes into extensions of the methodology discussed and analyzed in the prior chapter. Anthracene derivatives used for transferring triplet energy between a quantum dot and rubrene phase are found to have varying impacts on the total transfer efficiency based on the triplet lifetime of the anthracene derivative. Most potently, significant spin-orbit coupling in some of the derivatives causes substantial deactivation. An additional family, BODIPY dyes, is also investigated. They are found to undergo internal conversion gated by an excited-state conformational change, suggesting this may be a common motif. The fourth and fifth chapters investigate different interfacial effects and their impacts on the energy levels of electrons and holes in disordered organic devices. They look at specific systems: the interface between three different donors, PPV, P3HT, PTB7, and PCBM. They find that the interface can both reduce and induce disorder in different systems and that full treatment of the electronic environment is important for capturing accurate results. The final chapter investigates the use of neural networks to predict optimal range-separation parameters for density functionals.en_US
dc.description.statementofresponsibilityby Alexander Wolfe Kohn.en_US
dc.format.extent102 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleModeling non-radiative processes in solar materialsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc1036988284en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record