MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Equivariant wave maps on the hyperbolic plane with large energy

Author(s)
Oh, Sung-Jin; Shahshahani, Sohrab; Lawrie, Andrew W
Thumbnail
Download1505.03728.pdf (303.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this paper we continue the analysis of equivariant wave maps from 2-dimensional hyperbolic space H² into surfaces of revolution N that was initiated in [12, 13]. When the target N = H² we proved in [12] the existence and asymptotic stability of a 1-parameter family of finite energy harmonic maps indexed by how far each map wraps around the target. Here we conjecture that each of these harmonic maps is globally asymptotically stable, meaning that the evolution of any arbitrarily large finite energy perturbation of a harmonic map asymptotically resolves into the harmonic map itself plus free radiation. Since such initial data exhaust the energy space, this is the soliton resolution conjecture for this equation. The main result is a verification of this conjecture for a nonperturbative subset of the harmonic maps.
Date issued
2017-07
URI
http://hdl.handle.net/1721.1/115853
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Mathematical Research Letters
Publisher
International Press of Boston
Citation
Lawrie, Andrew et al. “Equivariant Wave Maps on the Hyperbolic Plane with Large Energy.” Mathematical Research Letters 24, 2 (2017): 449–479 © 2017 International Press of Boston
Version: Original manuscript
ISSN
1073-2780
1945-001X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.