Show simple item record

dc.contributor.authorDubbs, Alexander Joseph
dc.contributor.authorEdelman, Alan
dc.date.accessioned2018-05-31T12:13:31Z
dc.date.available2018-05-31T12:13:31Z
dc.date.issued2014-01
dc.date.submitted2013-12
dc.identifier.issn2010-3263
dc.identifier.issn2010-3271
dc.identifier.urihttp://hdl.handle.net/1721.1/116005
dc.description.abstractWe find the joint generalized singular value distribution and largest generalized singular value distributions of the β -MANOVA ensemble with positive diagonal covariance, which is general. This has been done for the continuous β > 0 case for identity covariance (in eigenvalue form), and by setting the covariance to I in our model we get another version. For the diagonal covariance case, it has only been done for β = 1, 2, 4 cases (real, complex, and quaternion matrix entries). This is in a way the first second-order β-ensemble, since the sampler for the generalized singular values of the β-MANOVA with diagonal covariance calls the sampler for the eigenvalues of the β-Wishart with diagonal covariance of Forrester and Dubbs-Edelman-Koev-Venkataramana. We use a conjecture of MacDonald proven by Baker and Forrester concerning an integral of a hypergeometric function and a theorem of Kaneko concerning an integral of Jack polynomials to derive our generalized singular value distributions. In addition we use many identities from Forrester’s Log-Gases and Random Matrices. We supply numerical evidence that our theorems are correct.en_US
dc.publisherWorld Scientific Pub Co Pte Lten_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S2010326314500026en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.subjectFinite random matrix theory; beta-ensembles; MANOVAen_US
dc.titleThe Beta-MANOVA Ensemble with General Covarianceen_US
dc.typeArticleen_US
dc.identifier.citationDUBBS, ALEXANDER, and ALAN EDELMAN. “The Beta-MANOVA Ensemble with General Covariance." Random Matrices: Theory and Applications 03, no. 01 (January 2014): 1450002.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDubbs, Alexander Joseph
dc.contributor.mitauthorEdelman, Alan
dc.relation.journalRandom Matrices: Theory and Applicationsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2018-05-21T12:48:59Z
dspace.orderedauthorsDUBBS, ALEXANDER; EDELMAN, ALANen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7676-3133
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record