MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

C-LEARN: Learning geometric constraints from demonstrations for multi-step manipulation in shared autonomy

Author(s)
Perez D'Arpino, Claudia; Shah, Julie A
Thumbnail
DownloadICRA17_DArpino_CLEARN.pdf (3.922Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Learning from demonstrations has been shown to be a successful method for non-experts to teach manipulation tasks to robots. These methods typically build generative models from demonstrations and then use regression to reproduce skills. However, this approach has limitations to capture hard geometric constraints imposed by the task. On the other hand, while sampling and optimization-based motion planners exist that reason about geometric constraints, these are typically carefully hand-crafted by an expert. To address this technical gap, we contribute with C-LEARN, a method that learns multi-step manipulation tasks from demonstrations as a sequence of keyframes and a set of geometric constraints. The system builds a knowledge base for reaching and grasping objects, which is then leveraged to learn multi-step tasks from a single demonstration. C-LEARN supports multi-step tasks with multiple end effectors; reasons about SE(3) volumetric and CAD constraints, such as the need for two axes to be parallel; and offers a principled way to transfer skills between robots with different kinematics. We embed the execution of the learned tasks within a shared autonomy framework, and evaluate our approach by analyzing the success rate when performing physical tasks with a dual-arm Optimas robot, comparing the contribution of different constraints models, and demonstrating the ability of C-LEARN to transfer learned tasks by performing them with a legged dual-arm Atlas robot in simulation.
Date issued
2017-06
URI
http://hdl.handle.net/1721.1/116016
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
2017 IEEE International Conference on Robotics and Automation (ICRA)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Perez-D’Arpino, Claudia, and Julie A. Shah. “C-LEARN: Learning Geometric Constraints from Demonstrations for Multi-Step Manipulation in Shared Autonomy.” 2017 IEEE International Conference on Robotics and Automation (ICRA) (May 2017).
Version: Author's final manuscript
ISBN
978-1-5090-4633-1

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.