dc.contributor.author | Trigo Neri Tabuada, Goncalo Jorge | |
dc.date.accessioned | 2018-06-04T18:22:41Z | |
dc.date.available | 2018-06-04T18:22:41Z | |
dc.date.issued | 2018-01 | |
dc.date.submitted | 2017-04 | |
dc.identifier.issn | 2379-1691 | |
dc.identifier.issn | 2379-1683 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/116064 | |
dc.description.abstract | Given a finite group G, we develop a theory of G-equivariant noncommutative motives. This theory provides a well-adapted framework for the study of G-schemes, Picard groups of schemes, G-algebras, 2-cocycles, G-equivariant algebraic K-theory, etc. Among other results, we relate our theory with its commutative counterpart as well as with Panin’s theory. As a first application, we extend Panin’s computations, concerning twisted projective homogeneous varieties, to a large class of invariants. As a second application, we prove that whenever the category of perfect complexes of a G-scheme X admits a full exceptional collection of G-invariant (≠G-equivariant) objects, the G-equivariant Chow motive of X is of Lefschetz type. Finally, we construct a G-equivariant motivic measure with values in the Grothendieck ring of G-equivariant noncommutative Chow motives.
Keywords: G-scheme; 2-cocycle; semidirect product algebra; twisted group algebra; equivariant algebraic K-theory; twisted projective homogeneous scheme; full exceptional collection; equivariant motivic measure; noncommutative algebraic geometry | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Award 1350472) | en_US |
dc.publisher | Mathematical Sciences Publishers | en_US |
dc.relation.isversionof | http://dx.doi.org/10.2140/AKT.2018.3.125 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Equivariant noncommutative motives | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Tabuada, Gonçalo. “Equivariant Noncommutative Motives.” Annals of K-Theory 3, 1 (January 2018): 125–156 © 2018 Mathematical Sciences Publishers | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Trigo Neri Tabuada, Goncalo Jorge | |
dc.relation.journal | Annals of K-Theory | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2018-05-31T15:40:07Z | |
dspace.orderedauthors | Tabuada, Gonçalo | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5558-9236 | |
mit.license | OPEN_ACCESS_POLICY | en_US |