MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

AdaptDB: Adaptive Partitioning for Distributed Joins

Author(s)
Jundal, Alekh; Lu, Yi; Shanbhag, Anil Atmanand; Madden, Samuel R
Thumbnail
DownloadAdaptDB.pdf (527.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Big data analytics often involves complex join queries over two or more tables. Such join processing is expensive in a distributed setting both because large amounts of data must be read from disk, and because of data shuffling across the network. Many techniques based on data partitioning have been proposed to reduce the amount of data that must be accessed, often focusing on finding the best partitioning scheme for a particular workload, rather than adapting to changes in the workload over time. In this paper, we present AdaptDB, an adaptive storage manager for analytical database workloads in a distributed setting. It works by partitioning datasets across a cluster and incrementally refining data partitioning as queries are run. AdaptDB introduces a novel hyper-join that avoids expensive data shuffling by identifying storage blocks of the joining tables that overlap on the join attribute, and only joining those blocks. Hyper-join performs well when each block in one table overlaps with few blocks in the other table, since that will minimize the number of blocks that have to be accessed. To minimize the number of overlapping blocks for common join queries, AdaptDB users smooth repartitioning to repartition small portions of the tables on join attributes as queries run. A prototype of AdaptDB running on top of Spark improves query performance by 2-3x on TPC-H as well as real-world dataset, versus a system that employs scans and shuffle-joins.
Date issued
2017-01
URI
http://hdl.handle.net/1721.1/116354
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the VLDB Endowment
Publisher
Association for Computing Machinery (ACM)
Citation
Lu, Yi, Anil Shanbhag, Alekh Jindal and Samuel Madden. "AdaptDB: Adaptive Partitioning for Distributed Joins." Proceedings of the VLDB Endowment 10, no. 5 (2017): 589-600.
Version: Final published version
ISSN
2150-8097

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.