Show simple item record

dc.contributor.authorKalidindi, Arvind Rama
dc.contributor.authorSchuh, Christopher A
dc.date.accessioned2018-06-18T19:33:53Z
dc.date.available2018-06-18T19:33:53Z
dc.date.issued2016-03
dc.date.submitted2016-02
dc.identifier.issn0927-0256
dc.identifier.urihttp://hdl.handle.net/1721.1/116381
dc.description.abstractLattice models can be a basic tool for alloy design, due to their ability to capture the most important thermodynamic and kinetic phenomena of a wide-range of alloys at a low computational cost. However, in order to correctly treat ordered precipitates at off-stoichiometric compositions requires multi-body potentials, and these can be challenging to calibrate to known alloy behaviors. Here we introduce a simple means of capturing the multi-body terms needed to treat ordered compounds in a lattice model based on defining “compound units”. This approach is particularly designed for, and easily calibrated in, cases where the structure and formation energy of equilibrium compounds are already known. This is accomplished by defining a compound unit that derives its energy from the formation energy of the compound as an a priori input. The method is illustrated for a binary alloy with D03 and B2 stable compounds. Keywords: Ordered compound; Intermetallic; Alloy; Ising model; Monte Carlo; Pairwiseen_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-14-1-0539)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.commatsci.2016.02.039en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Schuh via Erja Kajosaloen_US
dc.titleA compound unit method for incorporating ordered compounds into lattice models of alloysen_US
dc.typeArticleen_US
dc.identifier.citationKalidindi, Arvind R. and Christopher A. Schuh. “A Compound Unit Method for Incorporating Ordered Compounds into Lattice Models of Alloys.” Computational Materials Science 118 (June 2016): 172–179 © 2016 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.approverSchuh, Christopher A.en_US
dc.contributor.mitauthorKalidindi, Arvind Rama
dc.contributor.mitauthorSchuh, Christopher A
dc.relation.journalComputational Materials Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKalidindi, Arvind R.; Schuh, Christopher A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2854-650X
dc.identifier.orcidhttps://orcid.org/0000-0001-9856-2682
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record