Show simple item record

dc.contributor.authorHager, Bradford H
dc.contributor.authorTal, Yuval
dc.date.accessioned2018-06-18T19:36:01Z
dc.date.available2018-07-01T05:00:06Z
dc.date.issued2017-09
dc.date.submitted2017-03
dc.identifier.issn0178-7675
dc.identifier.issn1432-0924
dc.identifier.urihttp://hdl.handle.net/1721.1/116382
dc.description.abstractThis paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal–dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.en_US
dc.description.sponsorshipAramco Services Company (Grant 6500009957)en_US
dc.description.sponsorshipSouthern California Earthquake Center (Grant 16108)en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00466-017-1475-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleDynamic mortar finite element method for modeling of shear rupture on frictional rough surfacesen_US
dc.typeArticleen_US
dc.identifier.citationTal, Yuval, and Bradford H. Hager. “Dynamic Mortar Finite Element Method for Modeling of Shear Rupture on Frictional Rough Surfaces.” Computational Mechanics 61, no. 6 (September 9, 2017): 699–716.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorHager, Bradford H
dc.contributor.mitauthorTal, Yuval
dc.relation.journalComputational Mechanicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-05-27T03:35:10Z
dc.language.rfc3066en
dc.rights.holderSpringer-Verlag GmbH Germany
dspace.orderedauthorsTal, Yuval; Hager, Bradford H.en_US
dspace.embargo.termsNen
dc.identifier.orcidhttps://orcid.org/0000-0001-7308-9294
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record