Show simple item record

dc.contributor.authorShekhar, Karthik
dc.contributor.authorLapan, Sylvain W.
dc.contributor.authorWhitney, Irene E.
dc.contributor.authorTran, Nicholas M.
dc.contributor.authorMacosko, Evan Z.
dc.contributor.authorKowalczyk, Monika
dc.contributor.authorAdiconis, Xian
dc.contributor.authorLevin, Joshua Z.
dc.contributor.authorNemesh, James
dc.contributor.authorGoldman, Melissa
dc.contributor.authorMcCarroll, Steven A.
dc.contributor.authorCepko, Constance L.
dc.contributor.authorRegev, Aviv
dc.contributor.authorSanes, Joshua R.
dc.date.accessioned2018-07-03T16:06:03Z
dc.date.available2018-07-03T16:06:03Z
dc.date.issued2016-08
dc.date.submitted2016-06
dc.identifier.issn0092-8674
dc.identifier.issn1097-4172
dc.identifier.urihttp://hdl.handle.net/1721.1/116759
dc.description.abstractPatterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.en_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.CELL.2016.07.054en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleComprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomicsen_US
dc.typeArticleen_US
dc.identifier.citationShekhar, Karthik et al. “Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.” Cell 166, 5 (August 2016): 1308–1323 © 2016 Elsevier Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorRegev, Aviv
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-07-03T13:19:48Z
dspace.orderedauthorsShekhar, Karthik; Lapan, Sylvain W.; Whitney, Irene E.; Tran, Nicholas M.; Macosko, Evan Z.; Kowalczyk, Monika; Adiconis, Xian; Levin, Joshua Z.; Nemesh, James; Goldman, Melissa; McCarroll, Steven A.; Cepko, Constance L.; Regev, Aviv; Sanes, Joshua R.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8567-2049
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record