MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mayer-Vietoris property for relative symplectic cohomology

Author(s)
Varolgunes, Umut
Thumbnail
DownloadFull printable version (7.704Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Paul Seidel.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I construct and investigate the properties of a Floer theoretic invariant called relative symplectic cohomology. The construction is based on Hamiltonian Floer theory. It assigns a module over the Novikov ring to compact subsets of closed symplectic manifolds. I show the existence of restriction maps, and prove that they satisfy the Hamiltonian isotropy invariance property, discuss a Kunneth formula, and do some example computations. Relative symplectic cohomology is then used to establish a general criterion for displaceability of subsets. Finally, moving on to the main contribution of my thesis, I identify a natural geometric situation in which relative symplectic cohomology of two subsets satisfy the Mayer-Vietoris property. This is tailored to work under certain integrability assumptions, the weakest of which introduces a new geometric object called a barrier - roughly, a one parameter family of rank 2 co isotropic submanifolds. The proof uses a deformation argument in which the topological energy zero (i.e. constant) Floer solutions are the main actors.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 115-118).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117315
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.