MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energetically efficient electrochemically tunable affinity separation using multicomponent polymeric nanostructures for water treatment

Author(s)
Chen, Dexin; Mao, Xianwen; Tian, Wenda; Ren, Yinying; Curtis, Sarah E.; Buss, Marjorie T.; Rutledge, Gregory C; Hatton, Trevor Alan; ... Show more Show less
Thumbnail
Downloadc8ee02000k.pdf (5.123Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 Unported license http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We describe a water treatment strategy, electrochemically tunable affinity separation (ETAS), which, unlike other previously developed electrochemical processes, targets uncharged organic pollutants in water. Key to achieving ETAS resides in the development of multicomponent polymeric nanostructures that simultaneously exhibit the following characteristics: an oxidation-state dependent affinity towards neutral organics, high porosity for sufficient adsorption capacity, and high conductivity to permit electrical manipulation. A prototype ETAS adsorbent composed of nanostructured binary polymeric surfaces that can undergo an electrically-induced hydrophilic–hydrophobic transition can provide programmable control of capture and release of neutral organics in a cyclic fashion. A quantitative energetic analysis of ETAS offers insights into the tradeoff between energy cost and separation extent through manipulation of electrical swing conditions. We also introduce a generalizable materials design approach to improve the separation degree and energetic efficiency simultaneously, and identify the critical factors responsible for such enhancement via redox electrode simulations and theoretical calculations of electron transfer kinetics. The effect of operation mode and multistage configuration on ETAS performance is examined, highlighting the practicality of ETAS and providing useful guidelines for its operation at large scale. The ETAS approach is energetically efficient, environmentally friendly, broadly applicable to a wide range of organic contaminants of various molecular structures, hydrophobicity and functionality, and opens up new avenues for addressing the urgent, global challenge of water purification and wastewater management.
Date issued
2018-07
URI
http://hdl.handle.net/1721.1/117513
Department
Abdul Latif Jameel Poverty Action Lab (Massachusetts Institute of Technology)
Journal
Energy & Environmental Science
Publisher
Royal Society of Chemistry
Citation
Mao, Xianwen et al. “Energetically Efficient Electrochemically Tunable Affinity Separation Using Multicomponent Polymeric Nanostructures for Water Treatment.” Energy & Environmental Science (July 2018) © 2018 Royal Society of Chemistry
Version: Final published version
ISSN
1754-5692
1754-5706

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.