MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry

Author(s)
Osman, Matthew; Das, Sarah B.; Zawadowicz, Maria Anna; Cziczo, Daniel James
Thumbnail
Downloadamt-10-4459-2017.pdf (3.041Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 Unported license http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
Insoluble aerosol particles trapped in glacial ice provide insight into past climates, but analysis requires information on climatically relevant particle properties, such as size, abundance, and internal mixing. We present a new analytical method using a time-of-flight single-particle mass spectrometer (SPMS) to determine the composition and size of insoluble particles in glacial ice over an aerodynamic size range of ∼ 0.2-3.0μm diameter. Using samples from two Greenland ice cores, we developed a procedure to nebulize insoluble particles suspended in melted ice, evaporate condensed liquid from those particles, and transport them to the SPMS for analysis. We further determined size-dependent extraction and instrument transmission efficiencies to investigate the feasibility of determining particle-class-specific mass concentrations. We find SPMS can be used to provide constraints on the aerodynamic size, composition, and relative abundance of most insoluble particulate classes in ice core samples. We describe the importance of post-aqueous processing to particles, a process which occurs due to nebulization of aerosols from an aqueous suspension of originally soluble and insoluble aerosol components. This study represents an initial attempt to use SPMS as an emerging technique for the study of insoluble particulates in ice cores.
Date issued
2017-11
URI
http://hdl.handle.net/1721.1/117591
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Woods Hole Oceanographic Institution
Journal
Atmospheric Measurement Techniques
Publisher
Copernicus GmbH
Citation
Osman, Matthew et al. “Real-Time Analysis of Insoluble Particles in Glacial Ice Using Single-Particle Mass Spectrometry.” Atmospheric Measurement Techniques 10, 11 (November 2017): 4459–4477 © 2017 Author(s)
Version: Final published version
ISSN
1867-8548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.