Show simple item record

dc.contributor.authorNielsen, Alec Andrew
dc.contributor.authorVoigt, Christopher A.
dc.date.accessioned2018-09-12T20:52:06Z
dc.date.available2018-09-12T20:52:06Z
dc.date.issued2018-08
dc.date.submitted2017-12
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/117734
dc.description.abstractGenetic engineering projects are rapidly growing in scale and complexity, driven by new tools to design and construct DNA. There is increasing concern that widened access to these technologies could lead to attempts to construct cells for malicious intent, illegal drug production, or to steal intellectual property. Determining the origin of a DNA sequence is difficult and time-consuming. Here deep learning is applied to predict the lab-of-origin of a DNA sequence. A convolutional neural network was trained on the Addgene plasmid dataset that contained 42,364 engineered DNA sequences from 2230 labs as of February 2016. The network correctly identifies the source lab 48% of the time and 70% it appears in the top 10 predicted labs. Often, there is not a single “smoking gun” that affiliates a DNA sequence with a lab. Rather, it is a combination of design choices that are individually common but collectively reveal the designer.en_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41467-018-05378-zen_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDeep learning to predict the lab-of-origin of engineered DNAen_US
dc.typeArticleen_US
dc.identifier.citationNielsen, Alec A. K., and Christopher A. Voigt. “Deep Learning to Predict the Lab-of-Origin of Engineered DNA.” Nature Communications 9, 1 (August 2018): 3135 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorNielsen, Alec Andrew
dc.contributor.mitauthorVoigt, Christopher A.
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-09-12T12:48:27Z
dspace.orderedauthorsNielsen, Alec A. K.; Voigt, Christopher A.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2171-8460
dc.identifier.orcidhttps://orcid.org/0000-0003-0844-4776
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record