dc.contributor.advisor | Alexander Postnikov. | en_US |
dc.contributor.author | Hopkins, Samuel F | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mathematics. | en_US |
dc.date.accessioned | 2018-09-17T14:49:19Z | |
dc.date.available | 2018-09-17T14:49:19Z | |
dc.date.copyright | 2018 | en_US |
dc.date.issued | 2018 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/117780 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 195-200). | en_US |
dc.description.abstract | This thesis investigates an extension of the classical chip-firing process to "other Cartan-Killing types." In Chapter 1 we review the classical chip-firing game: the states of this process are configurations of chips on the vertices of a graph; the transition moves are firings whereby a vertex with at least as many chips as neighbors may send one chip to each neighbor. A fundamental property of chip-firing is that it is confluent: from any initial configuration, all sequences of firings lead to the same terminal configuration. In Chapter 2 we discuss Propp's labeled chip-firing process on the infinite path, for which confluence becomes a subtler question. We prove that labeled chip-firing is confluent starting from an even number of chips at the origin (but not from an odd number). In Chapter 3 we reinterpret labeled chip-firing as a process on the weight lattice of a root system, where the firing moves consist of adding a positive root whenever the weight we are at is orthogonal to that root. We call this the central-firing process. We give conjectures about certain initial weights from which central-firing is confluent. We also prove that central-firing is always confluent from all initial weights if we mod out by the action of the Weyl group, thereby giving a generalization of unlabeled chip firing on the infinite path to other types. In Chapter 4 we introduce some remarkable deformations of the central-firing process which we call the symmetric and truncated interval-firing processes. These are analogous to the Catalan and Shi hyperplane arrangements. We prove that these interval-firing processes are always confluent from all initial weights. In Chapter 5 we study the set of weights with given interval-firing stabilization. We show that the number of weights with given stabilization is a polynomial in our deformation parameter. We call these polynomials the symmetric and truncated Ehrhart-like polynomials, because they are analogous to the Ehrhart polynomial of a polytope. We conjecture that the Ehrhart-like polynomials have nonnegative integer coefficients. In Chapter 6 we prove "half" of this positivity conjecture by providing an explicit, positive formula for the symmetric Ehrhart-like polynomials. | en_US |
dc.description.statementofresponsibility | by Samuel Francis Hopkins. | en_US |
dc.format.extent | 200 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mathematics. | en_US |
dc.title | Root system chip-firing | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.oclc | 1051190416 | en_US |