MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interface-driven spin-orbit torques in magnetic heterostructures

Author(s)
Mann, Maxwell Spencer
Thumbnail
DownloadFull printable version (4.305Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Geoffrey S. D. Beach.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The connection between charge and spin transport in solid state materials offers new techniques for generating and detecting spin currents and could potentially allow high-performance memory and logic devices. Simple multilayer thin films or "heterostructures" such as Pt/Co have broken inversion symmetry, so a charge current gives rise to net spin current. Electrical and optical measurements reveal the effect of spin current on the magnetization, including chiral spin textures such as domain walls (DWs) and skyrmions. The magnetic properties of an ultrathin magnetic film are strongly sensitive to interfacial effects such as interfacial anisotropy and the Dzyaloshinskii-Moriya Interaction (DMI), which stabilizes chiral spin textures. This thesis is motivated to systematically vary the layer structure of magnetic heterostructures to understand and quantify spin-orbit torques. I showed that switching efficiency is consistent with harmonic spin orbit torque measurements in Pt/Co/Ta. My automation software and improved electromagnet enabled a new experimental technique that highlights the role of DMI in spin-orbit torque switching. I showed that a gold spacer layer inserted between platinum and cobalt independently modulates the DMI and spin transport. I demonstrated SOT switching of a ferromagnetic insulator for the first time. I also developed a temperature-controlled, high-speed electrical and optical measuring system to observe record-breaking DW velocity in ferrimagnetic GdCo. This thesis focuses on building experimental apparatus and understanding spin-orbit torques.
Description
Thesis: Sc. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged student-submitted from PDF version of thesis.
 
Includes bibliographical references (pages 198-204).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117791
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.