MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary signatures for unearthing functional elements in the human transcriptome

Author(s)
Chen, Jenny (Jennifer)
Thumbnail
DownloadFull printable version (72.50Mb)
Other Contributors
Harvard--MIT Program in Health Sciences and Technology.
Advisor
Aviv Regev.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Comparative genomics is a powerful method for identifying functional genetic elements by their evolutionary patterns across species. However, current studies largely focus on analysis of genome sequences. The recent development of RNA-sequencing reveals dimensions of regulatory information previously inaccessible to us by sequence alone. The comparison of RNA-sequencing data across mammals has great potential for addressing two open problems in biology: identifying the regulatory mechanisms crucial to mammalian physiology, and deciphering how gene regulation contributes to the diversity of mammalian phenotypes. For my thesis, I developed two methodologies for interrogating comparative transcriptomic data for biological inference. First, I developed a framework for quantifying the evolutionary forces acting on gene expression and inferring evolutionarily optimal expression levels. I demonstrate how to use this framework to identify expression pathways underlying conserved, adaptive, and disease states of mammalian biology. Second, I developed novel metrics of transcriptional evolution to evaluate the conservation of long noncoding RNAs. These metrics further reveal that long noncoding RNAs harbor distinct evolutionary signatures, suggesting that they are not a homogenous class of molecules but rather a mixture of multiple functional classes with distinct biological roles. My thesis work provides fundamental quantitative tools for asking biological questions about transcriptome evolution. These tools provide a pivotal framework for interpreting transcriptional data across species and pave the way for deciphering the regulatory changes that lead to mammalian phenotypic variation.
Description
Thesis: Ph. D. in Bioinformatics and Integrative Genomics, Harvard-MIT Program in Health Sciences and Technology, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged student-submitted from PDF version of thesis.
 
Includes bibliographical references (pages 141-156).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117792
Department
Harvard University--MIT Division of Health Sciences and Technology
Publisher
Massachusetts Institute of Technology
Keywords
Harvard--MIT Program in Health Sciences and Technology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.