Show simple item record

dc.contributor.advisorCharles E. Leiserson.en_US
dc.contributor.authorXu, Helen Jiangen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-09-17T14:50:51Z
dc.date.available2018-09-17T14:50:51Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117816
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 69-71).en_US
dc.description.abstractMany sparse matrices and tensors from a variety of applications, such as finite element methods and computational chemistry, have a natural aligned rectangular nonzero block structure. Researchers have designed high-performance blocked sparse operations which can take advantage of this sparse structure to reduce the complexity of storing the locations of nonzeros. The performance of a blocked sparse operation depends on how well a particular blocking scheme, or tiling of the sparse matrix into blocks, reflects the structure of nonzeros in the tensor. Since sparse tensor structure is generally unknown until runtime, blocking-scheme selection must be efficient. The fill is a quantity which, for some blocking scheme, relates the number of nonzero blocks to the number of nonzeros. Many performance models use the fill to help choose a blocking scheme. The fill is expensive to compute exactly, however. This thesis presents a sampling-based algorithm called PHIL that efficiently estimates the fill of sparse matrices and tensors in any format. Much of the thesis will appear in a paper coauthored with Peter Ahrens and Nicholas Schiefer. We provide theoretical guarantees for sparse matrices and tensors, and experimental results for matrices. The existing state-of-the-art fill-estimation algorithm, which we will call OSKI, runs in time linear in the number of elements in the tensor. In contrast, the number of samples PHIL needs to compute a fill estimate is unrelated to the number of nonzeros in the tensor. We compared PHIL and OSKI on a suite of hundreds of sparse matrices and found that on most inputs, PHIL estimates the fill at least 2 times faster and often more than 20 times faster than OSKI. PHIL consistently produced accurate estimates and was faster and/or more accurate than OSKI on all cases. Finally, we found that PHIL and OSKI produced comparable speedups in parallel blocked sparse matrix-vector multiplication.en_US
dc.description.statementofresponsibilityby Helen Jiang Xu.en_US
dc.format.extent71 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFill estimation for blocked sparse matrices and tensorsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1051460433en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record