MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computation by block copolymer self-assembly

Author(s)
Do, Hyung Wan
Thumbnail
DownloadFull printable version (7.093Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Karl K. Berggren.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Unconventional computation is a paradigm of computation that uses novel information tokens from natural systems to perform information processing. Using the complexity of physical systems, unconventional computing systems can efficiently solve problems that are difficult to solve classically. In this thesis, we use block copolymer self-assembly, a well-studied phenomenon in polymer science, to develop a new approach to computing by applying directed self-assembly to implement Ising-model-based computing systems in materials. In the first part of the thesis, we investigate directed self-assembly of block copolymer thin films within templates of different polygonal shapes. We define a two-state system based on the two degenerate alignment orientations of the ladder-shaped block copolymer structures formed inside square confinements, and study properties of the two-state system. In the second part of the thesis, we demonstrate an Ising lattice setup for directed self-assembly of block copolymers defined on two-dimensional arrays of posts. We develop an Ising-model-based simulation method that can perform block copolymer pattern prediction and template design. Finally, we design simple Boolean logic gates as a proof-of-concept demonstration of computation.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117840
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.