MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational design for the next manufacturing revolution

Author(s)
Schulz, Adriana
Thumbnail
DownloadFull printable version (31.62Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Wojciech Matusik.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Over the next few decades, we are going to transition to a new economy where highly complex, customizable products are manufactured on demand by flexible robotic systems. In many fields, this shift has already begun. 3D printers are revolutionizing production of metal parts in the aerospace, automotive, and medical industries. Whole-garment knitting machines allow automated production of complex apparel and shoes. Manufacturing electronics on flexible substrates makes it possible to build a whole new range of products for consumer electronics and medical diagnostics. Collaborative robots, such as Baxter from Rethink Robotics, allow flexible and automated assembly of complex objects. Overall, these new machines enable batch-one manufacturing of products that have unprecedented complexity. In this thesis, I argue that the field of computational design is essential for the next revolution in manufacturing. To build increasingly functional, complex and integrated products, we need to create design tools that allow their users to efficiently explore high-dimensional design spaces by optimizing over a set of performance objectives that can be measured only by expensive computations. In this work discuss how to overcome these challenges by 1) developing data-driven methods for efficient exploration of these large spaces and 2) performance-driven algorithms for automated design optimization based on high-level functional specifications. I showcase how these two concepts are applied by developing new systems for designing robots, drones, and furniture.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 169-180).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117844
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.